Home > Trigonometry > 30 Trigonemetric Problems and Equations

30 Trigonemetric Problems and Equations

1. \; \sqrt{ 1 + \sin x } + \sqrt{ 1 - \sin x} = 1 + \cos x \\  2. \; \sin \alpha = \dfrac{1}{4} \; and \; \alpha \in [ 0 ; \pi / 4 ] . \; Find \; \tan 2 \alpha \\  3. \; \tan 5x = \sin^2 x \cdot \tan 5x \\  4. \; \sin x + \sin 2x + \sin 3x = 1 + \cos x + \cos 2x \\  5. \; \sin x \cdot \sin 3x + \sin 4x \cdot \sin 8x = 0 \\  6. \; \sin 3x + \sin 5x = \sin 4x \\  7. \; \cos 3x \cdot \cos x - \cos 5x \cdot \cos 7x = 0 \\  8. \; \sin 3x \cdot \sin 5x + 2 \sin^2 x = 1 \\  9. \; \sin 2x \cdot \sin 6x = \cos x \cdot \cos 3x \\  10. \; \cos^4 x + \sin^4 x = \sin 2x - 0.5 \\  11. \; \cos 2x = \cos x - \sin x \\  12. \; \sin^6 x + \cos^6 x = \dfrac{1}{4} \cdot \sin^2 2x \\  13. \; \cos 7x + \sin 8x = \cos 3x - \sin 2x \\  14. \; 1 + \cos x + \cos 2x = 0 \\  15. \; \cos 2x - 5 \sin x - 3 = 0 \\  16. \; 4 \cdot \sin x \cdot \sin 2x \cdot \sin 3x = \sin 4x \\  17. \; \sin 2x = \cos^4 \dfrac{x}{2} - \sin^4 \frac{x}{2} \\  18. \; 2 \cos x + \sin x + 2 = 0 \\  19. \; \sin x + \sin 3x = 4 \cos^3 x \\  20. \; \sin^3 x \cdot \cos x - \cos^3 x \cdot \sin x = \dfrac{ \sqrt{2} }{8} \\  21. \; 1 - \sin 2x = \cos x - \sin x \\  22. \; 3 \cdot \tan 3x - 4 \cdot \tan 2x = \tan^2 2x \cdot \tan 3x \\  23. \; 3 \cdot ( 1 - \sin x ) = 1 + \cos 2x \\  24. \; \tan \dfrac{3x}{5} \cdot \cot \dfrac{5x}{3} = 1 - \sec \dfrac{3x}{5} \cdot \csc \dfrac{5x}{3} \\  25. \; \sin ( x + 25^\circ ) \cdot \sin ( x - 20^\circ ) = \sin ( 70^\circ + x ) \cdot \sin ( 65^\circ - x ) \\  26. \; \sin 2x + \cos 2x + \sin x + \cos x + 1 = 0 \\  27. \; \sin 3x = \cos x - \sin x \\  28. \; Find \; \sin ( 5 \arcsin x ) . \\  29. \; \cos 7x + \sin^2 2x = \cos^2 2x - \cos x \\  30. \; \sin x + \sin 2x + \sin 3x + \sin 4x = 0 \\

Advertisements
  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: